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A one dimensional simple harmonic oscillator is in equilibrium 
with a heat reservoir at absolute temperature T. Deduce the 
expression for the partition function of the system. Hence find out 
the expression for mean energy. What will be the values of 
average energy in the limiting cases of high and low 
temperatures? Are they in agreement with classical theory? 

Consider a one-dimensional harmonic oscillator at temperature T. If  is 
the oscillator frequency, the energy levels available for the oscillator are 
given by 
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The mean energy of the oscillator is given by 
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The summation term in the above expression is equivalent to the summation 
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Limiting cases: 

1) High temperature:  

In this case it is possible to neglect the higher order terms in the  
 
expression of  
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This is identical to the classical result, as expected. 
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2) Low temperature:  1
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This nonvanishing limiting value, called the zero point energy of 
the oscillator, cannot be explained classically and is due to the 
uncertainty principle.  Dr. 
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Discuss the behavior of the fermi function. Show that the 
derivative of the fermi function is symmetrical about E = EF.  

The fermi function is given by:  

where EF is the fermi energy (this is 
also called the chemical potential) 

where EF is the fermi energy (this is 
also called the chemical potential) 
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Therefore, F-D distribution function reduces to M-B function. 
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We, are, however, interested in the opposite limit where 0
kT

EF 

In this case E << EF, then 0
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E-E F  So that F(E) =1 

On the other hand, E >> EF, then 0
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falls off exponentially like a classical M-B distribution.  

If E = EF, then 
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The transition region in which f(E) goes from a value close to unity to a 
value close to zero corresponds to an energy interval of the order of kT 
about E=EF. 

In the limit T 0, the transition region is infinitesimally narrow and f(E) 
is given by the step function.  
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Now in eq (2), if we replace (E-EF) by  –(E-EF), the expression for 
f/(E) does not change. Therefore, f/(E) is symmetrical about E = EF.  
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is symmetrical about E = EF. To see this, we obtain from eq (1) 
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Plot the Fermi function at different temperatures and 
explain the significance  

The significance of the plot is as follows: 
At absolute zero the fermi gas is in ground 
state. Since the Pauli exclusion principle 
requires that there be no more than one 
fermion per state, all the lowest states will be 
occupied until the fermions are all 
accommodated. The fermi level, in this case, is 
simply the highest occupied state and above 
this energy level all the states are unoccupied. 

T2 > T1 

At a slightly higher temperature, T1, thermal energy excites the fermions. But the 
fermions lying well below the fermi level cannot absorb thermal energy because 
if they did so, they would move to a higher level which would be already 
occupied, and hence the exclusion principle would be violated. 

Therefore, only those electrons close to the fermi level can be excited since the 
level above EF are empty. The shape of the plot is thus only slightly distorted 
about E=EF. In a still higher temperature T2, even more fermions can be excited, 
the plot is further distorted about E=EF.  
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Problem 1: Calculate the relative number of atoms of hydrogen 
gas present in ground state and first excited state at room 
temperature and at very high temperature of 5000 K. Assume M-
B statistics to hold good for the hydrogen gas.  

Problems Related to Statistical Mechanics 

Maxwell-Boltzmann Distribution law: 
kTee /E
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In the ground state i = 1, there are two possible electron 
configuration. Similarly, the first excited state i = 2, there are 
eight possible electron configuration.  
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At high temperature T = 5000 K 
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Therefore, the hydrogen atom at higher temperature is greatly increased.  

k = 1.3810-23 J.K-1 
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Problem 2: In a system in thermal equilibrium at absolute 
temperature T, two states with energy difference 4.8310-21 J 
occur with relative probability e2. Deduce the temperature.  

According to the M-B distribution law, the probability of a 
particle for having an energy E is given by: 
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Problem 3: There are a large number of particles each of mass 
0.1 gm all lying in a box at an equilibrium temperature 300 K. 
Calculate the probability that any of them will spontaneously fly 
to a height 1 Å. Assume that they obey M-B statistics. (k = 

1.3810-23 J/K) 
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The probability of a particle for having an energy E is given by: 

In order to fly to a height 1 Å, the particle must have the energy 
  
 E = mgh = 0.1 10-3  9.8 10-10  J = 9.8 10-14 J 
 kT = 1.38 10-23 J/K  300 K = 4.14 10-21 J 
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So the probability is almost zero. 
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