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In quantum mechanics the wave function  corresponds to the wave variable y 
of wave motion in general. However, , unlike y, is not itself a measurable 
quantity and may therefore be complex. For this reason we assume that  for a 
particle moving freely in the +x direction is specified by:  

Schrödinger Equation 
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The total energy E of a particle is the sum of its kinetic energy 
(p2/2m) and its potential energy U, where U is in general a 
function of position (x) and time (t).  
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Multiplying both sides of equation (6) by wave function  gives, 
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Using equation (4) and (5) in equation (7) 
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This is the time dependant Schrodinger equation in One dimension. 

In Three Dimensional case: 
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Schrödinger Time Independent Equation 

The one dimensional wave function  of an unrestricted particle 
may be written as, 
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Evidently  is the product of a time-dependent function  and a 
position dependent function. 

Substituting  of equation (10) into the time dependent form of 
Schrödinger equation (7),  we find that: 
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This is the time independant Schrodinger equation in One dimension. 

In Three Dimensional case: 0)(
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 fFop 

Eigenfunction and Eigenvalue 

In general, an eigenvalue equation can be written as  
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Momentum operator 
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Fop is called the Operator,  is the eigenfunction and f is the eigen 
value. 

Therefore an operator operates on the eigenfunction and give the 
eigenvalue of the corresponding eigenfunction. 
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Application of Schrödinger Equation 
                  Particle in a Box 

The simplest quantum-mechanical 

problem is that of a particle trapped 

in a box with infinitely hard walls. We 

may specify the particles motion by 

saying that it is restricted to travelling 

along the x axis between x = 0 and x = 

L by infinitely hard walls.  
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A particle does not loss energy when it collides with such 

walls., so that its total energy stays constant. From a 

formal point of view the particle energy U of the particle 

is infinite on both sides of the box, while U is constant –

say 0 for convenience on the inside.  

 

Because the particle cannot have an infinite amount of 

energy, it cannot exist outside the box, and so its wave 

function  is 0 for x  0 and x   L. Our task is to find 

what  is within the box., namely between x =0 and x = L.  
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Within the box the potential energy U = 0 because the particle 

act as a free particle. Therefore the Schrödinger equation 

within the box can be written as: 

Boundary conditions:   =0 for x =0 and x =L:  
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Equation (1) has the solution 
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n = 1, 2, 3……This result comes about because the sin of the 

angles , 2, 3…..are all 0. 

 

From equation (4) it is clear that the energy of the particle can 

have only certain values, which are the eigenvalues. These 

eigenvalues, constituting the energy levels of the system, are 

found by solving equation (4) of En, which gives, 

Using another boundary condition  = 0 at x = L, 

equation (3) becomes 
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Equation (5) is called the energy equation of the particle in a box. 
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Wave function of a particle in a box: 

The wave function of a particle in a box whose energies are En, 

from equation (3) becomes 
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for the eigenfunctions corresponding to the energy eigenvalues En.  

For each quantum number n, n is a finite single-valued fuunction of 

x, and the derivative of n are continuous (except at the ends of the 

box). Furthermore, the integral of n
2over all space is finite, as we 

can see by integrating n
2dx from x =0 to x =L.  
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For normalization the wave function, 
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The normalized wave functions of the particle are therefore, 
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The normalized wave functions 1, 2, 3  together with the 

probability density  1 
2,  2 

2 and  13
2  are plotted in the 

following page.  
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Although n may be negative as well as positive, n 
2 is always 

positive and, since n is normalized, its value at a given x is equal to 

the probability density of finding the particle there. In every case, n 

2 =0 at x =0 and x =L, the boundaries of the box. At a particular place 

in the box the probability of the particle being present may be very 

different for different quantum numbers.  

For instance,  1 
2 has its maximum value at L/2 in the middle of the 

box, while  2 
2 =0 there. A particle in the lowest energy level of n=1 

is most likely to be in the middle of the box. While a particle in the 

next higher state n=2 is never there! Classical physics, of course 

suggest the same probability for the particle being anywhere in he 

box.  
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Find the probability that a particle trapped in a box of length L 

can be found between 0.45L and 0.55L for the ground and first 

excited state.  

Solution: The probability of finding the particle in the box 
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For the ground state, which correspond to n=1, we have probability  

= 0.198 = 19.8%. This is about twice the classical probability.  

 

For the first excited state, which corresponds to n =2, probability  

= 0.0065 = 0.65% 
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Show that the normalization of wave function is independent of 

time. 

Solution: The wave function  (x, t) can be written as a product 

of two functions as  
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This is independent of time. 
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A particle is moving in a one-dimensional box (of infinite 

height) of width 10 Å. Calculate the probability of finding 

the particle within an interval of 1 Å at the centre of the 

box, when it is in its state of least energy.  

Solution: The wave function  (x, t) of the particle in the 

ground state (n=1), is  
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Probability of finding the particle in unit interval at the centre 
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