Composition of two SHM at right angle to each other and having time period in the ratio 1:1

Let us consider two SHM acting at right angle to each other and have the same period as the following equations:

$$
\begin{aligned}
& x=a \sin (\omega t+\alpha)------(1) \\
& y=b \sin \omega t--------(2)
\end{aligned}
$$

It is clear that the amplitudes of the two SHM are different. The initial phase difference between them is α. From equ(2), we can write:

$$
\sin \omega t=\frac{y}{b}, \cos =\sqrt{1-\frac{y^{2}}{b^{2}}}
$$

From equ(1), we can write:

$$
\frac{x}{a}=\sin \omega t \cos \alpha+\cos \omega t \sin \alpha
$$

$$
\begin{aligned}
& \Rightarrow \frac{x}{a}=\frac{y}{b} \cos \alpha+\sqrt{1-\frac{y^{2}}{b^{2}}} \sin \alpha \\
& \Rightarrow \frac{x}{a}-\frac{y}{b} \cos \alpha=\sqrt{1-\frac{y^{2}}{b^{2}}} \sin \alpha \\
& \Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \cos ^{2} \alpha-\frac{2 x y}{a b} \cos \alpha=\left(1-\frac{y^{2}}{b^{2}}\right) \sin ^{2} \alpha \\
& \Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos \alpha=\sin ^{2} \alpha-----(3)
\end{aligned}
$$

This represents the general equation of two SHM acting at right angle to each other. The resultant vibration of the particle will depend upon the value of α.

Special case:

(1) $\alpha=0$ or 2π, eq(4) becomes $\mathrm{y}=\frac{b}{a} x$ It is a straight line with positive slope.
(2) $\alpha=\pi \quad \mathrm{y}=-\frac{b}{a} x$

It is a straight line with negative slope.
(3) $\alpha=\pi / 2 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Equation for ellipse of axes \boldsymbol{a} and \boldsymbol{b}.
(4) $\alpha=\pi / 2, \mathbf{a}=\mathbf{b} \quad x^{2}+y^{2}=a^{2}$

Equation for circle of radius a.
(5) $\alpha=\pi / 4 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b \sqrt{2}}=\frac{1}{2}$

Oblique ellipse of axes a and b.

Composition of two SHM at right angle to each other and having frequency ratio 2:1

Let us consider two SHM acting at right angle to each other and have the same period as the following equations:

$$
\begin{aligned}
& x=a \sin (2 \omega t+\alpha)------(1) \\
& y=b \sin \omega t--------(2)
\end{aligned}
$$

It is clear that the amplitudes of the two SHM are different. The initial phase difference between them is α. From equ(2), we can write:

$$
\sin \omega t=\frac{y}{b}, \cos =\sqrt{1-\frac{y^{2}}{b^{2}}}
$$

From equ(1), we can write:

$$
\frac{x}{a}=\sin 2 \omega t \cos \alpha+\cos 2 \omega t \sin \alpha
$$

$\Rightarrow \frac{x}{a}=2 \sin \omega t \cos \omega t \cos \alpha+\left(1-2 \sin ^{2} \omega t\right) \sin \alpha$
$\Rightarrow \frac{x}{a}=\frac{2 y}{b} \sqrt{1-\frac{y^{2}}{b^{2}}} \cos \alpha+\left(1-\frac{2 y^{2}}{b^{2}}\right) \sin \alpha$
$\Rightarrow \frac{x}{a}-\left(1-\frac{2 y^{2}}{b^{2}}\right) \sin \alpha=\frac{2 y}{b} \sqrt{1-\frac{y^{2}}{b^{2}}} \cos \alpha$
$\Rightarrow\left[\left(\frac{x}{a}-\sin \alpha\right)+\frac{2 y^{2}}{b^{2}} \sin \alpha\right]^{2}=\left[\frac{2 y}{b} \sqrt{1-\frac{y^{2}}{b^{2}}} \cos \alpha\right]^{2}$
$\Rightarrow\left(\frac{x}{a}-\sin \alpha\right)^{2}+2\left(\frac{x}{a}-\sin \alpha\right) \frac{2 y^{2}}{b^{2}} \sin \alpha+\frac{4 y^{4}}{b^{4}} \sin ^{2} \alpha=\frac{4 y^{2}}{b^{2}}\left(1-\frac{y^{2}}{b^{2}}\right) \cos ^{2} \alpha$
$\Rightarrow\left(\frac{x}{a}-\sin \alpha\right)^{2}+\frac{4 y^{4}}{b^{4}}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)-\frac{4 y^{2}}{b^{2}}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)+\frac{4 y^{2}}{b^{2}} \frac{x}{a} \sin \alpha=0$
$\Rightarrow\left(\frac{x}{a}-\sin \alpha\right)^{2}+\frac{4 y^{4}}{b^{4}}-\frac{4 y^{2}}{b^{2}}+\frac{4 y^{2}}{b^{2}} \frac{x}{a} \sin \alpha=0$

$$
\Rightarrow\left(\frac{x}{a}-\sin \alpha\right)^{2}+\frac{4 y^{2}}{b^{2}}\left(\frac{y^{2}}{b^{2}}+\frac{x}{a} \sin \alpha-1\right)=0----(3)
$$

This represents the general equation of two SHM acting at right angle to each other having frequency ration 2:1

The following Lissajous figures contained two loops at different phase difference.

Special case:

(1) $\alpha=0, \pi, 2 \pi$, ...etc, eq(3) becomes

$$
\Rightarrow \frac{x^{2^{2}}}{a^{2}}+\frac{4 y^{2}}{b^{2}}\left(\frac{y^{2}}{b^{2}}-1\right)=0----(4)
$$

Equation of a two loops.
(2) $\alpha=\pi / 2$, eq(3) becomes

$$
\Rightarrow\left(\frac{x}{a}-1\right)^{2}+\frac{4 y^{2}}{b^{2}}\left(\frac{y^{2}}{b^{2}}+\frac{x}{a}-1\right)=0
$$

$$
\Rightarrow\left(\frac{x}{a}-1\right)^{2}+\frac{4 y^{2}}{b^{2}}\left(\frac{x}{a}-1\right)+\frac{4 y^{4}}{b^{4}}=0
$$

$$
\Rightarrow\left[\left(\frac{x}{a}-1\right)^{2}+\frac{2 y^{2}}{b^{2}}\right]^{2}=0 \Rightarrow\left(\frac{x}{a}-1\right)^{2}+\frac{2 y^{2}}{b^{2}}=0
$$

$$
\Rightarrow y^{2}=-\frac{b^{2}}{2 a^{2}}(x-a)----(5)
$$

This represents the equation of a parabola with vertex at ($\mathrm{a}, 0$).

