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Every system inevitably has dissipative features through which 
the mechanical energy of the vibration is depleted. We shall now 
consider how the equation of free-vibration is modified by the 
introduction of dissipative forces. In this case, the resistive force 
is exerted oppositely to the direction velocity itself. The 
statement of Newton’s law for the moving mass, m, can be 
written as: 
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In this case, the damping is characterized by the quantity , having 

the dimension of frequency, and the constant   would represent 

the angular frequency of the system if the damping is absent. 
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Equation (1) is the differential equation of a damped harmonic 

oscillator. This is the homogeneous linear type differential equation 

of the second order, must have at least on solution of the form: 

Equ (2) is clearly a quadratic equation in p, the solution of which is: 
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pty Ae where, A and p are both arbitrary constant.   

Let this be used as a trial solution. Differentiating              with 

respect to time, we get,  
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Putting these values into the equation (1), we can write 
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The differential equation (1) is, therefore, satisfies by two values of 

y,  
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The equation being a linear one, the linear sum of the two linearly 

independent solution of the equation. Thus the general solution is: 
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Where A1 and A2 are two arbitrary constants. The values of the 

arbitrary constants A1 and A2 may be determined as follows. 

Differentiating equation (3) with respect to t, we get: 
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Let the maximum value of the displacement y be ymax=a0 say at time 

t =0, Then we have from equation (3),  
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Hence, from equation (4), we have 
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Solving equation (5) and (6), we have 
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Substituting these values of A1 and A2 in equation (3), we have 
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This is the solution of a damped harmonic vibration. 
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