
1 

The solution of a damped harmonic motion is therefore written as:  
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Over damped motion: 2 2 

is clearly a real quantity with a positive value, less than .  

which  indicates that damping is large. 

2 2 

Thus, each of the two terms on the right side of equation (7) has an 

exponential term with a negative power and hence each decreases 

exponentially with time. In this case, the particle does not vibrate. 

The displacement, after attaining its maximum value falls off 

asymptotically to zero in the figure.  

 

There is thus no oscillation and the motion is, therefore, called 

overdamped or aperiodic or dead beat. Examples are dead beat 

galvanometer or a pendulum oscillating in a viscous fluid like oil.  
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Critically damped motion: 2 2 

so that, each of the two terms on the right hand side 

of equation (7) becomes infinite and the solution 

breaks down.  

which  indicates that damping is large. 
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Let us, however, consider that       is not quite equal to     , but very  

 

nearly so, so that                          , a very small quantity but not zero.  

 

Then, we have from eq(3)  
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Neglecting terms containing second and higher powers of h, we get  
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Second term                  decays less rapidly than the first term  
0
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The displacement of the oscillator first increases but as t increases 

the exponential factor   becomes more important and the 

displacement decreases rapidly reaching the value zero for a finite 

value of t.  The oscillator just ceases to oscillate and its motion just 

becomes aperiodic or non-oscillatory. This is called the case of 

critical damping. 

 

This principle finds application in many pointer-type instruments like 

galvanometers where the pointer moves at once to and stays at, the 

correct position, without any annoying oscillations. It may be seem 

that although the motion is non-oscillatory both in case of critical 

damping and overdamping the time taken to reach near the 

equilibrium position from  a given displacement becomes greater and 

greater with the increase of damping.  
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Under damped motion: 2 2 

The quantity  2 2  is clearly imaginary, say equal to ig, where  

2 2g    is a real quantity. 

Then, we have from eq(3)  
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Equation (10) is the equation of a damped harmonic oscillator with 

amplitude              and frequency  
0
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It is so called because the sine term in the equation suggests the 

oscillatory character of the motion and the exponential term, the 

gradual damping out of the oscillation in Fig. 

 

The amplitude of the oscillation does not remain constant at a0, 

which represents the amplitude in the absence of any damping but 

decays exponentially with time to zero, in accordance with the term 

        . The term         is called the damping factor. te  te 


